Development of a Geochemical Mapping Method for the Prospecting Deposits, Environmental Research and Regional Planning on the Basis of Multielement Investigations of Plant Ashes

by

Hansgeorg Pape translated from German by K. Allard

with 11 figures and 26 tables in the text and on 2 folders

1981

GEBRÜDER BORNTRAEGER · BERLIN · STUTTGART

Contents

Absti	ract	1
1	Remarks on the purpose of a geochemical multielement map	2
2	The biogeochemical method and its advantages	4
3	Selection of the plant species in the region under investigation	9
4	Sampling procedure, preparation of samples and performance of the chemical	
	analyses	13
5	Comparison of the content of elements in the plant ash with the help of	
	relative content classes	16
6	Development of a representation of geochemical element associations in a	
	Norwegian ilmenite ore district in the form of maps	21
	6.1 Element association over anorthosite	22
	6.2 Element association over monzonitic rocks	22
	6.3 Element association over noritic rocks	23
	6.4 Heavy metal association over titanium mineralizations	24
7	Performance of the investigations to an additional plant species	30
8	Biogeochemical mapping in the Harz Mountains, a region with manifold	
	geochemical influences	35
	8.1 Element association over granitic zones	37
	8.2 Element association over argillaceous-arenaceous sedimentary rocks	37
	8.3 Element association over quartzite sandstones	38
	8.4 Element association with well balanced occurrence of the principal	
	elements, without increased contents of heavy metals	39
	8.5 Element association over the Iberg Limestone	40
	8.6 Element association over rocks of the diabase volcanism	40
	8.6.1 Heavy metal association over roteisenstein deposits	41
	8.7 Element association over gabbro rocks	42
	8.7.1 Element association over the strongly basic members of the gabbro	
	rock family	42
	8.7.2 Heavy metal association over gabbroid nickel mineralization	43
	8.8 Heavy metal association over hydrothermal baryte veins	43
	8.9 Heavy metal association over hydrothermal lead and zinc ore veins	44
	8.9.1 Nickel-rich variation of the heavy metal association over hydrothermal	
	vein mineralizations	45
	8.10 Element association over peat bog areas	45

Contents

	8.11 Superposition by sodium	46
	8.12 Superposition by the element pair Ba-Mo	47
	8.13 Superposition by the element set Zn-Pb-Cu	47
9	Superregional comparison of the results with the aid of constant plants	
	species	48
10	Potential applications of biogeochemical multielement mapping	51
11	Conclusions	53
	References	54
	Authors, Locality and Subject Index	56
	Appendix with biogeochemical maps of the Harz Mountains see folders after inde	ex